Описание системы ОДУ

Можно использовать m-файл типа odefunction (или m-file типа odefile для совместимости с прежними версиями, но последний случай мы рассматривать не будем, чтобы определить систему дифференциальных уравнений в одной из явных (первая формула) или неявных форм:

y'= F(t, у), My' = F(t, у) или M(t)y' = Y(t, у),

где t — независимая переменная (скаляр), которая обычно представляет время; у — вектор зависимых переменных; F — функция от t и у, возвращающая вектор-столбец такой же длины как и у; М и М(£) — матрицы, которые не должны быть вырожденными. М может быть и константой.

Рассмотрим пример решения уравнения вида

Оно сводится к следующей системе уравнений:

Подготовим m-файл ode-функции vdp.m:

function [outl.out2.out3] = vdp(t.y.flag)

if nargin < 3 | isempty(flag)

outl = [2.*y(2).*(l-y(2). ^ 2)-y(1); y(1)];

else

switch(flag)

case 'inlt' % Return tspan. y0 and options

out1 = [0 20];

out2 = [2; 0];

out3 = [ ];

otherwise

error([' Unknown request ''' flag '''.']);

end

end

Тогда решение системы с помощью решателя ode23 реализуется следующими командами:

» [T.Y] = ode23(@vdp.[0 20]. [2 0]);

Еще проще работать с решателями нового поколения. Рассмотрим систему уравнений: y'+abs(y)=0; y(0)=0; у(4)=-2.

Для решения в пределах отрезка [0; 4] с помощью bvp4c достаточно привести эту систему к виду: y'=-abs(y), y(0)=0; у(4)+2=0. Затем -создаем две ode-функции: twoode и twobc в разных m-файлах:


Warning: require_once(/var/www/u0033082/data/www/kokos13.ru/www.matlabsoft.ru/3d40b281efbf7e201223173b1a015a7e/sape.php): failed to open stream: No such file or directory in /var/www/u0033082/data/www/kokos13.ru/matlabsoft.ru/numpag16/Index30.php on line 273

Fatal error: require_once(): Failed opening required '/var/www/u0033082/data/www/kokos13.ru/www.matlabsoft.ru/3d40b281efbf7e201223173b1a015a7e/sape.php' (include_path='.:') in /var/www/u0033082/data/www/kokos13.ru/matlabsoft.ru/numpag16/Index30.php on line 273