|
|
|
Вычисление собственных значений и сингулярных чисел
Во многих областях математики и прикладных наук большое значение имеют средства для вычисления собственных значений (собственных чисел, характеристических чисел, решений векового уравнения) матриц, принадлежащих им векторов и сингулярных чисел. В новой версии MATLAB собственные вектора нормализуются, иначе, чем в предыдущих. Основной критерий: либо V'V=I, либо V'BV=I, где V — собственный вектор, I — единичная матрица. Поэтому результаты вычислений в новой версии, как правило, отличаются. Ниже дан список средств решения векового уравнения, реализованных в системе MATLAB.
Несимметрические матрицы могут быть плохо обусловлены при вычислении их собственных значений. Малые изменения элементов матрицы, такие как ошибки округления, могут вызвать большие изменения в собственных значениях. Масштабирование — это попытка перевести каждую плохую обусловленность собственных векторов матрицы в диагональное масштабирование. Однако масштабирование обычно не может преобразовать несимметрическую матрицу в симметрическую, а только пытается сделать (векторную) норму каждой строки равной норме соответствующего столбца. Масштабирование значительно повышает стабильность собственных значений.
-
[D.B] = balance(A) — возвращает диагональную матрицу D, элементы которой являются степенями основания 2, и масштабированную матрицу В, такую, что B=D\A*D, а норма каждого ряда масштабированной матрицы приближается к норме столбца с тем же номером;
-
В = balance(A) — возвращает масштабированную матрицу В. Пример использования функции balance:
» А=[1 1000 10000:0.0001 1 1000:0.000001 0.0001 1]
А =
1.0е+004 *
0.0001 0.1000 1.0000
0.0000 0.0001 0.1000
0.0000 0.0000 0.0001
» [F.G]=balance(A)
F =
1.0е+004 *
3.2768 0 0
0
0.0032 0
0 0 0.0000
G =
1.0000 0.9766 0.0095
0.1024 1.0000 0.9766
1.0486 0.1024 1.0000
Величина, связывающая погрешность вычисления собственных значений с погрешностью исходных данных, называется числом обусловленности (собственных значений) матрицы и вычисляется следующим образом:
cond(V) = norm(V)*norm(inv(V)) где [V.D]=eig(A).[B=D\A*D, а норма каждого ряда масштабированной матрицы приближается к норме столбца с тем же номером;]
-
eig(A) — возвращает вектор собственных значений квадратной полной или симметрической разреженной матрицы А обычно после автоматического масштабирования, но для больших разреженных матриц (в терминологии MATLAB —
это просто полные матрицы со сравнительно большим [ Но небольшим по сравнению с числом нулей разреженной матрицы. Эталонное число нулей разреженной матрицы данного размера можно вычислить, применив к полной матрице этого же размера функцию sparse. — Примеч. ред. ] числом нулей), а также во всех случаях, где помимо собственных значений необходимо получать и собственные вектора разреженной матрицы, вместо нее рекомендовано использовать eigs(A);
-
eig(A.B) - возвращает вектор обобщенных собственных значений квадратных матриц А и В;
-
[V.D] = eig(A.B) — вычисляет диагональную матрицу обобщенных собственных значений D и матрицу V, столбцы которой являются соответствующими собственными векторами (правыми собственными векторами), таким образом что А V = В V D;
Warning: require_once(/var/www/u0033082/data/www/kokos13.ru/www.matlabsoft.ru/3d40b281efbf7e201223173b1a015a7e/sape.php): failed to open stream: No such file or directory in /var/www/u0033082/data/www/kokos13.ru/matlabsoft.ru/numpag11/Index12.php on line 307
Fatal error: require_once(): Failed opening required '/var/www/u0033082/data/www/kokos13.ru/www.matlabsoft.ru/3d40b281efbf7e201223173b1a015a7e/sape.php' (include_path='.:') in /var/www/u0033082/data/www/kokos13.ru/matlabsoft.ru/numpag11/Index12.php on line 307
-